

DENTAL TECHNIQUE

Prosthetic management of implants placed with the socket-shield technique

Howard Gluckman, BDS, MChD (OMP),^a Katalin Nagy, DDS, PhD,^b and Jonathan Du Toit, BChD, Dip Oral Surg, Dipl Implantol, MSc (Dent)^c

Root submergence to preserve the alveolar ridge was first reported about 50 years ago. In 2010, Hurzeler et al² published a method of preserving the facial ridge at immediate implant placement with part of a submerged root. These authors sectioned the submerged

a submerged root. These authors sectioned the submerged tooth root such that its facial root portion remained attached to a healthy and intact periodontium adjacent to an immediate implant. This technique has been described in several reports³⁻¹⁰ and has been somewhat modified by Gluckman et al. ¹¹⁻¹⁵ The original technique proposed applying enamel matrix derivative to the inner dentin surface of the socket-shield to promote cementum formation. ² However, the technique may not require this step. Not only are these materials exceedingly costly but also human histology has demonstrated that bone can grow between root dentin adjacent to an implant surface

without enamel matrix derivative.¹⁶ Baumer et al¹⁵ also omitted this step in their follow-up study. The original

technique by Hurzeler et al² also advocated drilling through the root with the implant drills and preparing

the initial osteotomy somewhat inside the tooth root, with the socket-shield 1-mm coronal to the facial bone

crest. A similar treatment, the root membrane technique,

also advocated these steps¹⁷ although the modified

technique reported by Gluckman et al¹⁸ did not. In the

largest cohort reported to date of 128 socket-shields

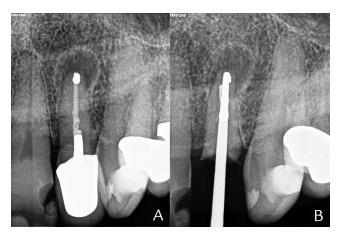
ABSTRACT

Partial extraction therapies, such as the socket-shield technique, use the patient's tooth tissues and periodontium to preserve the alveolar ridge and limit postextraction resorption. Internal exposure through the overlying peri-implant mucosa has been reported as the most common complication, suggesting that the preparation technique requires modification. This technique report describes the prosthetic management of the socket-shield technique, emphasizing preparation of the socket-shield to the bone crest, and the creation of an S-shape prosthetic emergence profile to support maximal soft tissue infill. (J Prosthet Dent 2018; :=.=)

followed up to 4 years, the authors reported the most common complication encountered to be internal exposure. This means that the coronal portion of the socket-shield facing the implant crown and abutment penetrated the soft tissue (in 9.4% of the treatments), and in some instances, inflammation was noted. Regardless, the authors stated this as a complication requiring management. The peri-implant mucosa should be healthy and not ulcerated. This technique report will provide step-by-step management of the coronal socket-shield and prosthetics in an effort to limit this complication.

TECHNIQUE

The clinician providing immediate implant treatment and the socket-shield technique should be experienced with advanced training. For all treatments, comprehensive planning must be carried out, including planning the prosthetic outcomes with digital smile design and/or with trial restorations. Data are typically obtained with 3-dimensional cone-beam computed tomography scan of


Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

^aSpecialist in Periodontics, Implantology and Oral medicine, Private practice, Cape Town, South Africa; and Director, The Implant Clinic, The Implant & Aesthetics Academy, Cape Town, South Africa.

^bProfessor and Head of Oral Surgery, Faculty of Dentistry, University of Szeged, Szeged, Hungary.

^cResident, Department of Periodontics and Oral Medicine, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.

2 Volume ■ Issue ■

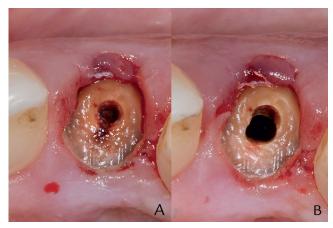
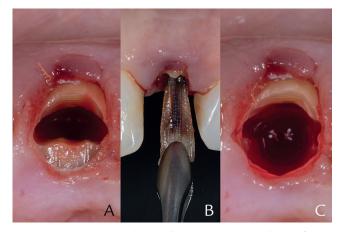


Figure 1. A, Preoperative periapical radiograph of maxillary left lateral incisor. B, Decoronated tooth with long-shank rotary instrument inserted to root length.


the treatment site. The following steps outline the clinical procedures once the treatment has been thoroughly planned and indications for the socket-shield met.¹³

As described previously, ¹⁸ the socket-shield for single-rooted teeth is prepared as follows:

- 1. Achieve adequate local anesthesia of the working site and decoronate the tooth planned for partial extraction. At all times, take care not to cut or damage the adjacent structures (gingiva, adjacent teeth, or restorations). Cut the crown with a conventionally irrigated high-speed handpiece coupled to a straight diamond rotary instrument (Bur H254LE; Komet Dental) to approximately the level of the gingiva (Figs. 1, 2). Complete the preparation of the socket-shield with the same handpiece with sequential rotary instruments under copious irrigation.
- 2. Once decoronated, section the tooth root vertically in a mesiodistal direction, creating a facial and a palatal root portion. Aid sectioning of the root by making sequential periapical radiographs (Fig. 1). Use an endodontic file or a Gates-Glidden rotary instrument inserted to the apex to orient and measure on the radiographs. If previously endodontically treated, these may aid in removing the root canal obturation materials (Figs. 1-3).
- 3. Use periotomes and microelevators to carefully dislodge the palatal root portion into the buccal space created when sectioning the root. Be sure to handle the tissues with care at all times. Do not ever lever against the facial root portion but instead apply finger pressure to support and sense movement. Once loose, remove the palatal root portion with microforceps (Fig. 3).
- 4. Refine the facial root portion with a long-shank diamond rotary instrument (Bur 801; Komet

Figure 2. A, Occlusal view after decoronation. B, Root canal widened to apex with long-shank root resection rotary instrument.

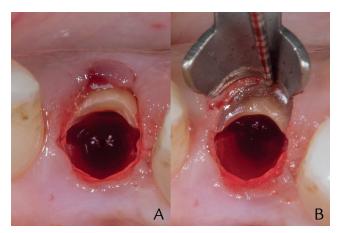
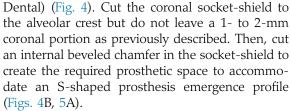
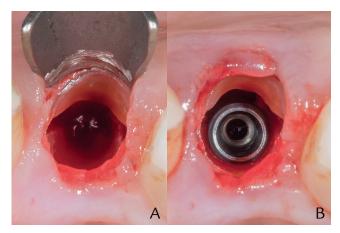


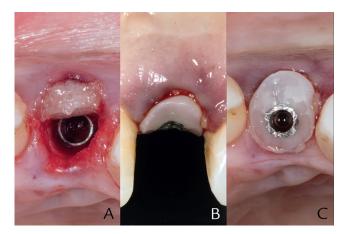
Figure 3. A, Root sectioned vertically and cut mesiodistally into facial and palatal portions. B, C, Palatal root portion removed.


Dental) and gingival protector (Wound Retractor 24-158-00; Ustomed), orienting the rotary instrument toward the tooth apex in a triangular movement. As much as possible, avoid cutting excessively into adjacent alveolar bone. Reduce the socket-shield to approximately half the thickness from the canal to the root's facial limit, creating a concave structure extending from the mesial to the distal of the socket.

- 5. Curette the apex and rinse repeatedly. Make sequential periapical radiographs to ensure all root canal obturation materials are fully removed and that the root apex with all its contents and any pathologic tissues are removed. If an apical periodontal ligament space can be seen on the radiograph, or any other radiopaque dental materials, then repeat this step carefully until all are removed. Do not proceed without ensuring complete removal of pathologic tissues.
- 6. Reflect and protect the gingiva and complete the definitive coronal reduction with a large round diamond rotary instrument (Bur 801; Komet

2018


Figure 4. A, Apical and root canal contents removed, socket rinsed. B, Under magnification, gingiva protected, socket-shield reduced to crestal bone.


- 7. Prepare the implant osteotomy apical/palatal to the fully prepared socket-shield. Follow conventional immediate implant placement protocol and insert the implant (Fig. 5). Seal the implant with its cover screw and graft the facial gap if accessible with a bone material (NovaBone Putty; NovaBone) (Fig. 6A). Omit this step if the space between the implant and socket-shield is small.
- 8. Verify the implant's primary stability. If adequate implant stability quotient (ISQ; >70), attach an interim crown immediately. If less than adequate (<60 ISQ), attach a custom transgingival abutment to the implant that mimics the intended emergence profile (Fig. 6B, C). Ensure ample space for soft tissue by designing a narrow but expanding S-shape curve in the transgingival, prosthetic component. Observe the facial gingiva and ensure that minimal to no blanching of the tissue occurs. Reduce the prosthetic component if needed while maintaining an emergence that seals the socket entrance.
- 9. Ensure the interim crown has no contact in maximum intercuspation or excursive moments, or if a custom abutment is used, ensure no contact with the subsequent interim prosthesis.
- 10. Make a postoperative radiograph.

DISCUSSION

The socket-shield technique is potentially one of the most significant contributions to implant and restorative

Figure 5. A, Internal, coronal portion reduced, creating beveled chamfer. B, Immediate implant placement, palatal to socket-shield.

Figure 6. A, Facial gap grafted with bone particulate. B, C, Custom healing abutment attached to implant, with platelet-rich fibrin membranes beneath.

dentistry, managing the resorptive sequalae of tooth extraction. The technique, part of a collective concept known as partial extraction therapies, challenges the extract-and-augment mindset.¹² Although clinical reports, case series, and trial studies have been published,^{3-10,14,15} a consistent approach to the technique is essential.

The technique as it is known today requires preparation of the socket-shield to bone level as previously reported. Many aspects of the socket-shield technique and other partial extraction therapies remain to be researched. These include factors such as vertical length of the socket-shield, its thickness, grafting the gap, materials and instrumentation, and their impact on overall treatment. However, what is known from the current literature is that the original socket-shield preparation as recommended by Hurzeler et al² at 1 mm or more above the socket crest may result in perforation of the shield through the overlying healed/healing soft tissue, known as exposure. When this occurs facing the implant

4 Volume ■ Issue ■

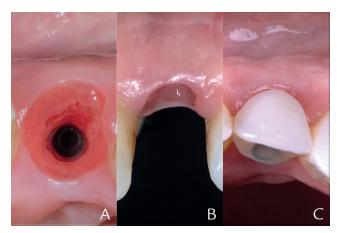


Figure 7. A, B, 3 months of healing. C, Definitive metal-ceramic, screw-retained crown.

Figure 9. Diagram of socket-shield, reduced to crestal bone with internal beveled chamfer. Note S-shape contour of transgingival prosthetic portion.

prosthesis, it is termed an internal exposure, and this type has been reported to be the most common complication of the technique (9.4% of the treatments). 18 This could also be expected of the root membrane technique of Siormpas et al, 17 one that is similar to the original method by Hurzeler et al, that also proposes a 1-mm or more supracrestal preparation of the tooth root portion. For this reason, the current authors strongly recommend meticulous reduction of the socket-shield to the bone crest, achievable almost exclusively with reflection of the coronal gingiva under magnification.

Because of the risk of tissue loss, a full-thickness flap is not recommended in most patients, especially in single-tooth and esthetic zone sites. Instead, a gingival protector should reflect the soft tissue away during preparation of the coronal socket-shield (Fig. 4B). However, multiple partial extraction therapies, multiple submerged root sites, and socket-shields adjacent to each other may better be prepared by raising a flap.

Figure 8. Postoperative cone beam computed tomography at integration check, before proceeding to definitive restoration.

Figure 10. Definitive outcome.

The second important aspect of this technique report is the preparation of an internal beveled chamfer (Fig. 5A). After the socket-shield has been reduced to crestal bone, it needs to be cut in an oblique direction, reducing its most coronal and internal aspect facing the socket. A large round diamond rotary instrument coupled to a high-speed handpiece cuts away this area, providing more prosthetic space for soft tissue infill between the implant prosthesis' emerging transgingival portion (Fig. 7). The socket-shield in situ, healed and prepared as described, can be seen on the cone-beam computed tomography at an integration check before the definitive restoration (Fig. 8). The third important aspect of this technique is the preparation of the prosthetic emergence profile. This should reflect an S-shape (Fig. 9). The connecting abutment at the implant needs to emerge as narrow as possible, then curve wider, and then back toward the implant's long axis. This prosthetic design provides maximal soft tissue infill and avoids excessive pressure on the socket-shield's coronal portion that previously resulted in internal exposure. The intended esthetic outcomes (Fig. 10) with a bulk of tissue

2018

supported facial to the immediate implant was achieved for the patient described (Figs. 7, 8).

SUMMARY

With each addition of the socket-shield technique to the literature, more is learned about the treatment's potential and how to minimize its complications. Internal exposure of the socket-shield is a known complication and can be adequately managed by reducing the coronal portion. Conversely, this technique report emphasizes the prosthetic management of this area to prevent the complication. The restoration and/or interim restoration/customized transgingival healing abutment must be prepared in an S-shape to allow for maximal infill of the coronal soft tissue.

REFERENCES

- O'Neal RB, Gound T, Levin MP, del Rio CE. Submergence of roots for alveolar bone preservation. I. Endodontically treated roots. Oral Surg Oral Med Oral Pathol 1978:45:803-10.
- Hurzeler MB, Zuhr O, Schupbach P, Rebele SF, Emmanouilidis N, Fickl S. The socket-shield technique: a proof-of-principle report. J Clin Periodontol 2010;37:855-62.
- Chen C, Pan Y. Socket shield technique for ridge preservation: a case report. J Prosthodontics Implantology 2013;2:16-21.
- Cherel F, Etienne D. Papilla preservation between two implants: a modified socket-shield technique to maintain the scalloped anatomy? A case report. Quintessence Int 2014;45:23-30.
- Glocker M, Attin T, Schmidlin PR. Ridge preservation with modified "socket-shield" technique: a methodological case series. Dent J 2014;2: 11-21.
- Kan JY, Rungcharassaeng K. Proximal socket shield for interimplant papilla preservation in the esthetic zone. Int J Periodontics Restorative Dent 2013;33: e24-31.
- Saeidi Pour R, Zuhr O, Hurzeler M, Prandtner O, Rafael CF. Clinical benefits
 of the immediate implant socket-shield technique. J Esthet Restor Dent
 2017;2:93-101.

- Bramanti E, Norcia A, Cicciu M, Matacena G, Cervino G, Troiano G, et al.
 Postextraction dental implant in the aesthetic zone, socket shield technique
 versus conventional protocol. J Craniofac Surg 2018. [Ahead of print].
 Tan Z, Kang J, Liu W, Wang H. The effect of the heights and thicknesses of
- Tan Z, Kang J, Liu W, Wang H. The effect of the heights and thicknesses of the remaining root segments on buccal bone resorption in the socket-shield technique: an experimental study in dogs. Clin Implant Dent Relat Res 2018. [Ahead of print].
- Roe P, Kan JYK, Rungcharassaeng K. Residual root preparation for socketshield procedures: a facial window approach. Int J Esthet Dent 2017;12:324-35.
- Gluckman H, Du Toit J, Salama M. The pontic-shield: partial extraction therapy for ridge preservation and pontic site development. Int J Periodontics Restorative Dent 2016;36:417-23.
- Gluckman H, Salama M, Du Toit J. Partial extraction therapies (PET) Part 1: maintaining alveolar ridge contour at pontic and immediate implant sites. Int J Periodontics Restorative Dent 2016;36:681-7.
- Gluckman H, Salama M, Du Toit J. Partial extraction therapies (PET) Part 2: procedures and technical aspects. Int J Periodontics Restorative Dent 2017;37: 377-85
- Baumer D, Zuhr O, Rebele S, Hurzeler M. Socket-shield technique for immediate implant placement - clinical, radiographic and volumetric data after 5 years. Clin Oral Implants Res 2017;28:1450-8.
- Baumer D, Zuhr O, Rebele S, Schneider D, Schupbach P, Hurzeler M. The socket-shield technique: first histological, clinical, and volumetrical observations after separation of the buccal tooth segment - a pilot study. J Esthet Restor Dent 2015;17:71-82.
- Schwimer C, Pette GA, Gluckman H, Salama M, Du Toit J. Human histologic evidence of new bone formation and osseointegration between root dentin (unplanned socket-shield) and sental implant: case Report. Int J Oral Maxillofac Implants 2018;33:e19-23.
- Siormpas KD, Mitsias ME, Kontsiotou-Siormpa E, Garber D, Kotsakis GA. Immediate implant placement in the esthetic zone utilizing the "root-membrane" technique: clinical results up to 5 years postloading. Int J Oral Maxillofac Implants 2014;29:1397-405.
- Gluckman H, Salama M, Du Toit J. A retrospective evaluation of 128 socketshield cases in the esthetic zone and posterior sites: partial extraction therapy with up to 4 years follow-up. Clin Implant Dent Relat Res 2017;20:122-9.

Corresponding author:

Dr Howard Gluckman The Implant Clinic 39 Kloof St, Gardens 8001 Cape Town SOUTH AFRICA Email: docg@mweb.co.za

Copyright © 2018 by the Editorial Council for *The Journal of Prosthetic Dentistry*. https://doi.org/10.1016/j.prosdent.2018.06.009